Birman—Wenzl—Murakami Algebra and Topological Basis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curves and Topological Algebra

Let ε 3 ∞ be arbitrary. Recently, there has been much interest in the description of covariant, pseudo-characteristic, Littlewood arrows. We show that every maximal domain is commutative. This leaves open the question of admissibility. In contrast, recent developments in applied arithmetic [3] have raised the question of whether GP ( Q̂, . . . , 1 N ) = ∫∫∫ Γ ( UPλ, . . . , 1 2 ) dW ∨ · · ·+ β (...

متن کامل

Variable-basis topological systems versus variable-basis topological spaces

LoA) and τ is a subalgebra of A . Morphisms (X,A, τ) (f,φ) −−−→ (Y,B, σ) are Set × LoA-morphisms (X,A) (f,φ) −−−→ (Y,B) such that φ ◦ p ◦ f ∈ τ for every p ∈ σ (the so-called continuity). Our definition subsumes the traditional latticevalued approach of [2]. The motivation for the new concept was provided by the problem of doing fuzzy mathematics without order. In [1] the authors consider a rel...

متن کامل

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

Stone duality, topological algebra, and recognition

Our main result is that any topological algebra based on a Boolean space is the extended Stone dual space of a certain associated Boolean algebra with additional operations. A particular case of this result is that the profinite completion of any abstract algebra is the extended Stone dual space of the Boolean algebra of recognisable subsets of the abstract algebra endowed with certain residuat...

متن کامل

Stable Algebraic Topology and Stable Topological Algebra

Algebraic topology is a young subject, and its foundations are not yet firmly in place. I shall give some history, examples, and modern developments in that part of the subject called stable algebraic topology, or stable homotopy theory. This is by far the most calculationally accessible part of algebraic topology, although it is also the least intuitively grounded in visualizable geometric obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Theoretical Physics

سال: 2012

ISSN: 0253-6102

DOI: 10.1088/0253-6102/57/2/02